%PDF-1.5 %���� ºaâÚÎΞ-ÌE1ÍØÄ÷{òò2ÿ ÛÖ^ÔÀá TÎ{¦?§®¥kuµùÕ5sLOšuY
Server IP : www.kowitt.ac.th / Your IP : 216.73.216.118 Web Server : Microsoft-IIS/7.5 System : Windows NT SERVER02 6.1 build 7601 (Windows Server 2008 R2 Standard Edition Service Pack 1) i586 User : IUSR ( 0) PHP Version : 5.6.31 Disable Function : NONE MySQL : ON | cURL : ON | WGET : OFF | Perl : OFF | Python : OFF | Sudo : OFF | Pkexec : OFF Directory : C:/Program Files/Microsoft VS Code/resources/app/extensions/git/node_modules/zone.js/lib/ |
Upload File : |
/** * @license * Copyright Google Inc. All Rights Reserved. * * Use of this source code is governed by an MIT-style license that can be * found in the LICENSE file at https://angular.io/license */ /* * Suppress closure compiler errors about unknown 'global' variable * @fileoverview * @suppress {undefinedVars} */ /** * Zone is a mechanism for intercepting and keeping track of asynchronous work. * * A Zone is a global object which is configured with rules about how to intercept and keep track * of the asynchronous callbacks. Zone has these responsibilities: * * 1. Intercept asynchronous task scheduling * 2. Wrap callbacks for error-handling and zone tracking across async operations. * 3. Provide a way to attach data to zones * 4. Provide a context specific last frame error handling * 5. (Intercept blocking methods) * * A zone by itself does not do anything, instead it relies on some other code to route existing * platform API through it. (The zone library ships with code which monkey patches all of the * browsers's asynchronous API and redirects them through the zone for interception.) * * In its simplest form a zone allows one to intercept the scheduling and calling of asynchronous * operations, and execute additional code before as well as after the asynchronous task. The rules * of interception are configured using [ZoneConfig]. There can be many different zone instances in * a system, but only one zone is active at any given time which can be retrieved using * [Zone#current]. * * * * ## Callback Wrapping * * An important aspect of the zones is that they should persist across asynchronous operations. To * achieve this, when a future work is scheduled through async API, it is necessary to capture, and * subsequently restore the current zone. For example if a code is running in zone `b` and it * invokes `setTimeout` to scheduleTask work later, the `setTimeout` method needs to 1) capture the * current zone and 2) wrap the `wrapCallback` in code which will restore the current zone `b` once * the wrapCallback executes. In this way the rules which govern the current code are preserved in * all future asynchronous tasks. There could be a different zone `c` which has different rules and * is associated with different asynchronous tasks. As these tasks are processed, each asynchronous * wrapCallback correctly restores the correct zone, as well as preserves the zone for future * asynchronous callbacks. * * Example: Suppose a browser page consist of application code as well as third-party * advertisement code. (These two code bases are independent, developed by different mutually * unaware developers.) The application code may be interested in doing global error handling and * so it configures the `app` zone to send all of the errors to the server for analysis, and then * executes the application in the `app` zone. The advertising code is interested in the same * error processing but it needs to send the errors to a different third-party. So it creates the * `ads` zone with a different error handler. Now both advertising as well as application code * create many asynchronous operations, but the [Zone] will ensure that all of the asynchronous * operations created from the application code will execute in `app` zone with its error * handler and all of the advertisement code will execute in the `ads` zone with its error handler. * This will not only work for the async operations created directly, but also for all subsequent * asynchronous operations. * * If you think of chain of asynchronous operations as a thread of execution (bit of a stretch) * then [Zone#current] will act as a thread local variable. * * * * ## Asynchronous operation scheduling * * In addition to wrapping the callbacks to restore the zone, all operations which cause a * scheduling of work for later are routed through the current zone which is allowed to intercept * them by adding work before or after the wrapCallback as well as using different means of * achieving the request. (Useful for unit testing, or tracking of requests). In some instances * such as `setTimeout` the wrapping of the wrapCallback and scheduling is done in the same * wrapCallback, but there are other examples such as `Promises` where the `then` wrapCallback is * wrapped, but the execution of `then` in triggered by `Promise` scheduling `resolve` work. * * Fundamentally there are three kinds of tasks which can be scheduled: * * 1. [MicroTask] used for doing work right after the current task. This is non-cancelable which is * guaranteed to run exactly once and immediately. * 2. [MacroTask] used for doing work later. Such as `setTimeout`. This is typically cancelable * which is guaranteed to execute at least once after some well understood delay. * 3. [EventTask] used for listening on some future event. This may execute zero or more times, with * an unknown delay. * * Each asynchronous API is modeled and routed through one of these APIs. * * * ### [MicroTask] * * [MicroTask]s represent work which will be done in current VM turn as soon as possible, before VM * yielding. * * * ### [TimerTask] * * [TimerTask]s represent work which will be done after some delay. (Sometimes the delay is * approximate such as on next available animation frame). Typically these methods include: * `setTimeout`, `setImmediate`, `setInterval`, `requestAnimationFrame`, and all browser specif * variants. * * * ### [EventTask] * * [EventTask]s represent a request to create a listener on an event. Unlike the other task * events may never be executed, but typically execute more than once. There is no queue of * events, rather their callbacks are unpredictable both in order and time. * * * ## Global Error Handling * * * ## Composability * * Zones can be composed together through [Zone.fork()]. A child zone may create its own set of * rules. A child zone is expected to either: * * 1. Delegate the interception to a parent zone, and optionally add before and after wrapCallback * hook.s * 2) Or process the request itself without delegation. * * Composability allows zones to keep their concerns clean. For example a top most zone may chose * to handle error handling, while child zones may chose to do user action tracking. * * * ## Root Zone * * At the start the browser will run in a special root zone, which is configure to behave exactly * like the platform, making any existing code which is not-zone aware behave as expected. All * zones are children of the root zone. * */ interface Zone { /** * * @returns {Zone} The parent Zone. */ parent: Zone; /** * @returns {string} The Zone name (useful for debugging) */ name: string; /** * Returns a value associated with the `key`. * * If the current zone does not have a key, the request is delegated to the parent zone. Use * [ZoneSpec.properties] to configure the set of properties associated with the current zone. * * @param key The key to retrieve. * @returns {any} The value for the key, or `undefined` if not found. */ get(key: string): any; /** * Returns a Zone which defines a `key`. * * Recursively search the parent Zone until a Zone which has a property `key` is found. * * @param key The key to use for identification of the returned zone. * @returns {Zone} The Zone which defines the `key`, `null` if not found. */ getZoneWith(key: string): Zone; /** * Used to create a child zone. * * @param zoneSpec A set of rules which the child zone should follow. * @returns {Zone} A new child zone. */ fork(zoneSpec: ZoneSpec): Zone; /** * Wraps a callback function in a new function which will properly restore the current zone upon * invocation. * * The wrapped function will properly forward `this` as well as `arguments` to the `callback`. * * Before the function is wrapped the zone can intercept the `callback` by declaring * [ZoneSpec.onIntercept]. * * @param callback the function which will be wrapped in the zone. * @param source A unique debug location of the API being wrapped. * @returns {function(): *} A function which will invoke the `callback` through [Zone.runGuarded]. */ wrap<F extends Function>(callback: F, source: string): F; /** * Invokes a function in a given zone. * * The invocation of `callback` can be intercepted be declaring [ZoneSpec.onInvoke]. * * @param callback The function to invoke. * @param applyThis * @param applyArgs * @param source A unique debug location of the API being invoked. * @returns {any} Value from the `callback` function. */ run<T>(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T; /** * Invokes a function in a given zone and catches any exceptions. * * Any exceptions thrown will be forwarded to [Zone.HandleError]. * * The invocation of `callback` can be intercepted be declaring [ZoneSpec.onInvoke]. The * handling of exceptions can intercepted by declaring [ZoneSpec.handleError]. * * @param callback The function to invoke. * @param applyThis * @param applyArgs * @param source A unique debug location of the API being invoked. * @returns {any} Value from the `callback` function. */ runGuarded<T>(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): T; /** * Execute the Task by restoring the [Zone.currentTask] in the Task's zone. * * @param callback * @param applyThis * @param applyArgs * @returns {*} */ runTask(task: Task, applyThis?: any, applyArgs?: any): any; scheduleMicroTask( source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void): MicroTask; scheduleMacroTask( source: string, callback: Function, data: TaskData, customSchedule: (task: Task) => void, customCancel: (task: Task) => void): MacroTask; scheduleEventTask( source: string, callback: Function, data: TaskData, customSchedule: (task: Task) => void, customCancel: (task: Task) => void): EventTask; /** * Allows the zone to intercept canceling of scheduled Task. * * The interception is configured using [ZoneSpec.onCancelTask]. The default canceler invokes * the [Task.cancelFn]. * * @param task * @returns {any} */ cancelTask(task: Task): any; } interface ZoneType { /** * @returns {Zone} Returns the current [Zone]. Returns the current zone. The only way to change * the current zone is by invoking a run() method, which will update the current zone for the * duration of the run method callback. */ current: Zone; /** * @returns {Task} The task associated with the current execution. */ currentTask: Task; /** * Verify that Zone has been correctly patched. Specifically that Promise is zone aware. */ assertZonePatched(); } /** * Provides a way to configure the interception of zone events. * * Only the `name` property is required (all other are optional). */ interface ZoneSpec { /** * The name of the zone. Usefull when debugging Zones. */ name: string; /** * A set of properties to be associated with Zone. Use [Zone.get] to retrive them. */ properties?: {[key: string]: any}; /** * Allows the interception of zone forking. * * When the zone is being forked, the request is forwarded to this method for interception. * * @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation. * @param currentZone The current [Zone] where the current interceptor has beed declared. * @param targetZone The [Zone] which originally received the request. * @param zoneSpec The argument passed into the `fork` method. */ onFork?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, zoneSpec: ZoneSpec) => Zone; /** * Allows interception of the wrapping of the callback. * * @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation. * @param currentZone The current [Zone] where the current interceptor has beed declared. * @param targetZone The [Zone] which originally received the request. * @param delegate The argument passed into the `warp` method. * @param source The argument passed into the `warp` method. */ onIntercept?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, delegate: Function, source: string) => Function; /** * Allows interception of the callback invocation. * * @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation. * @param currentZone The current [Zone] where the current interceptor has beed declared. * @param targetZone The [Zone] which originally received the request. * @param delegate The argument passed into the `run` method. * @param applyThis The argument passed into the `run` method. * @param applyArgs The argument passed into the `run` method. * @param source The argument passed into the `run` method. */ onInvoke?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, delegate: Function, applyThis: any, applyArgs: any[], source: string) => any; /** * Allows interception of the error handling. * * @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation. * @param currentZone The current [Zone] where the current interceptor has beed declared. * @param targetZone The [Zone] which originally received the request. * @param error The argument passed into the `handleError` method. */ onHandleError?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, error: any) => boolean; /** * Allows interception of task scheduling. * * @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation. * @param currentZone The current [Zone] where the current interceptor has beed declared. * @param targetZone The [Zone] which originally received the request. * @param task The argument passed into the `scheduleTask` method. */ onScheduleTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task) => Task; onInvokeTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task, applyThis: any, applyArgs: any) => any; /** * Allows interception of task cancelation. * * @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation. * @param currentZone The current [Zone] where the current interceptor has beed declared. * @param targetZone The [Zone] which originally received the request. * @param task The argument passed into the `cancelTask` method. */ onCancelTask?: (parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, task: Task) => any; /** * Notifies of changes to the task queue empty status. * * @param parentZoneDelegate Delegate which performs the parent [ZoneSpec] operation. * @param currentZone The current [Zone] where the current interceptor has beed declared. * @param targetZone The [Zone] which originally received the request. * @param isEmpty */ onHasTask?: (delegate: ZoneDelegate, current: Zone, target: Zone, hasTaskState: HasTaskState) => void; } ; /** * A delegate when intercepting zone operations. * * A ZoneDelegate is needed because a child zone can't simply invoke a method on a parent zone. For * example a child zone wrap can't just call parent zone wrap. Doing so would create a callback * which is bound to the parent zone. What we are interested is intercepting the callback before it * is bound to any zone. Furthermore, we also need to pass the targetZone (zone which received the * original request) to the delegate. * * The ZoneDelegate methods mirror those of Zone with an addition of extra targetZone argument in * the method signature. (The original Zone which received the request.) Some methods are renamed * to prevent confusion, because they have slightly different semantics and arguments. * * - `wrap` => `intercept`: The `wrap` method delegates to `intercept`. The `wrap` method returns * a callback which will run in a given zone, where as intercept allows wrapping the callback * so that additional code can be run before and after, but does not associated the callback * with the zone. * - `run` => `invoke`: The `run` method delegates to `invoke` to perform the actual execution of * the callback. The `run` method switches to new zone; saves and restores the `Zone.current`; * and optionally performs error handling. The invoke is not responsible for error handling, * or zone management. * * Not every method is usually overwritten in the child zone, for this reason the ZoneDelegate * stores the closest zone which overwrites this behavior along with the closest ZoneSpec. * * NOTE: We have tried to make this API analogous to Event bubbling with target and current * properties. * * Note: The ZoneDelegate treats ZoneSpec as class. This allows the ZoneSpec to use its `this` to * store internal state. */ interface ZoneDelegate { zone: Zone; fork(targetZone: Zone, zoneSpec: ZoneSpec): Zone; intercept(targetZone: Zone, callback: Function, source: string): Function; invoke(targetZone: Zone, callback: Function, applyThis: any, applyArgs: any[], source: string): any; handleError(targetZone: Zone, error: any): boolean; scheduleTask(targetZone: Zone, task: Task): Task; invokeTask(targetZone: Zone, task: Task, applyThis: any, applyArgs: any): any; cancelTask(targetZone: Zone, task: Task): any; hasTask(targetZone: Zone, isEmpty: HasTaskState): void; } type HasTaskState = { microTask: boolean; macroTask: boolean; eventTask: boolean; change: TaskType; }; /** * Task type: `microTask`, `macroTask`, `eventTask`. */ type TaskType = string; /* TS v1.8 => "microTask" | "macroTask" | "eventTask" */ ; /** */ interface TaskData { /** * A periodic [MacroTask] is such which get automatically rescheduled after it is executed. */ isPeriodic?: boolean; /** * Delay in milliseconds when the Task will run. */ delay?: number; /** * identifier returned by the native setTimeout. */ handleId?: number; } /** * Represents work which is executed with a clean stack. * * Tasks are used in Zones to mark work which is performed on clean stack frame. There are three * kinds of task. [MicroTask], [MacroTask], and [EventTask]. * * A JS VM can be modeled as a [MicroTask] queue, [MacroTask] queue, and [EventTask] set. * * - [MicroTask] queue represents a set of tasks which are executing right after the current stack * frame becomes clean and before a VM yield. All [MicroTask]s execute in order of insertion * before VM yield and the next [MacroTask] is executed. * - [MacroTask] queue represents a set of tasks which are executed one at a time after each VM * yield. The queue is order by time, and insertions can happen in any location. * - [EventTask] is a set of tasks which can at any time be inserted to the end of the [MacroTask] * queue. This happens when the event fires. * */ interface Task { /** * Task type: `microTask`, `macroTask`, `eventTask`. */ type: TaskType; /** * Debug string representing the API which requested the scheduling of the task. */ source: string; /** * The Function to be used by the VM on entering the [Task]. This function will delegate to * [Zone.runTask] and delegate to `callback`. */ invoke: Function; /** * Function which needs to be executed by the Task after the [Zone.currentTask] has been set to * the current task. */ callback: Function; /** * Task specific options associated with the current task. This is passed to the `scheduleFn`. */ data: TaskData; /** * Represents the default work which needs to be done to schedule the Task by the VM. * * A zone may chose to intercept this function and perform its own scheduling. */ scheduleFn: (task: Task) => void; /** * Represents the default work which needs to be done to un-schedule the Task from the VM. Not all * Tasks are cancelable, and therefore this method is optional. * * A zone may chose to intercept this function and perform its own scheduling. */ cancelFn: (task: Task) => void; /** * @type {Zone} The zone which will be used to invoke the `callback`. The Zone is captured * at the time of Task creation. */ zone: Zone; /** * Number of times the task has been executed, or -1 if canceled. */ runCount: number; } interface MicroTask extends Task { /* TS v1.8 => type: 'microTask'; */ } interface MacroTask extends Task { /* TS v1.8 => type: 'macroTask'; */ } interface EventTask extends Task { /* TS v1.8 => type: 'eventTask'; */ } /** * Extend the Error with additional fields for rewritten stack frames */ interface Error { /** * Stack trace where extra frames have been removed and zone names added. */ zoneAwareStack?: string; /** * Original stack trace with no modiffications */ originalStack?: string; } /** @internal */ type AmbientZone = Zone; /** @internal */ type AmbientZoneDelegate = ZoneDelegate; const Zone: ZoneType = (function(global: any) { if (global['Zone']) { throw new Error('Zone already loaded.'); } class Zone implements AmbientZone { static __symbol__: (name: string) => string = __symbol__; static assertZonePatched() { if (global.Promise !== ZoneAwarePromise) { throw new Error( 'Zone.js has detected that ZoneAwarePromise `(window|global).Promise` ' + 'has been overwritten.\n' + 'Most likely cause is that a Promise polyfill has been loaded ' + 'after Zone.js (Polyfilling Promise api is not necessary when zone.js is loaded. ' + 'If you must load one, do so before loading zone.js.)'); } } static get current(): AmbientZone { return _currentZoneFrame.zone; }; static get currentTask(): Task { return _currentTask; }; public get parent(): AmbientZone { return this._parent; }; public get name(): string { return this._name; }; private _parent: Zone; private _name: string; private _properties: {[key: string]: any} = null; private _zoneDelegate: ZoneDelegate; constructor(parent: Zone, zoneSpec: ZoneSpec) { this._parent = parent; this._name = zoneSpec ? zoneSpec.name || 'unnamed' : '<root>'; this._properties = zoneSpec && zoneSpec.properties || {}; this._zoneDelegate = new ZoneDelegate(this, this._parent && this._parent._zoneDelegate, zoneSpec); } public get(key: string): any { const zone: Zone = this.getZoneWith(key) as Zone; if (zone) return zone._properties[key]; } public getZoneWith(key: string): AmbientZone { let current: Zone = this; while (current) { if (current._properties.hasOwnProperty(key)) { return current; } current = current._parent; } return null; } public fork(zoneSpec: ZoneSpec): AmbientZone { if (!zoneSpec) throw new Error('ZoneSpec required!'); return this._zoneDelegate.fork(this, zoneSpec); } public wrap<T extends Function>(callback: T, source: string): T { if (typeof callback !== 'function') { throw new Error('Expecting function got: ' + callback); } const _callback = this._zoneDelegate.intercept(this, callback, source); const zone: Zone = this; return function() { return zone.runGuarded(_callback, this, <any>arguments, source); } as any as T; } public run(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): any; public run<T>( callback: (...args: any[]) => T, applyThis: any = null, applyArgs: any[] = null, source: string = null): T { _currentZoneFrame = new ZoneFrame(_currentZoneFrame, this); try { return this._zoneDelegate.invoke(this, callback, applyThis, applyArgs, source); } finally { _currentZoneFrame = _currentZoneFrame.parent; } } public runGuarded(callback: Function, applyThis?: any, applyArgs?: any[], source?: string): any; public runGuarded<T>( callback: (...args: any[]) => T, applyThis: any = null, applyArgs: any[] = null, source: string = null) { _currentZoneFrame = new ZoneFrame(_currentZoneFrame, this); try { try { return this._zoneDelegate.invoke(this, callback, applyThis, applyArgs, source); } catch (error) { if (this._zoneDelegate.handleError(this, error)) { throw error; } } } finally { _currentZoneFrame = _currentZoneFrame.parent; } } runTask(task: Task, applyThis?: any, applyArgs?: any): any { task.runCount++; if (task.zone != this) throw new Error( 'A task can only be run in the zone which created it! (Creation: ' + task.zone.name + '; Execution: ' + this.name + ')'); const previousTask = _currentTask; _currentTask = task; _currentZoneFrame = new ZoneFrame(_currentZoneFrame, this); try { if (task.type == 'macroTask' && task.data && !task.data.isPeriodic) { task.cancelFn = null; } try { return this._zoneDelegate.invokeTask(this, task, applyThis, applyArgs); } catch (error) { if (this._zoneDelegate.handleError(this, error)) { throw error; } } } finally { _currentZoneFrame = _currentZoneFrame.parent; _currentTask = previousTask; } } scheduleMicroTask( source: string, callback: Function, data?: TaskData, customSchedule?: (task: Task) => void): MicroTask { return <MicroTask>this._zoneDelegate.scheduleTask( this, new ZoneTask('microTask', this, source, callback, data, customSchedule, null)); } scheduleMacroTask( source: string, callback: Function, data: TaskData, customSchedule: (task: Task) => void, customCancel: (task: Task) => void): MacroTask { return <MacroTask>this._zoneDelegate.scheduleTask( this, new ZoneTask('macroTask', this, source, callback, data, customSchedule, customCancel)); } scheduleEventTask( source: string, callback: Function, data: TaskData, customSchedule: (task: Task) => void, customCancel: (task: Task) => void): EventTask { return <EventTask>this._zoneDelegate.scheduleTask( this, new ZoneTask('eventTask', this, source, callback, data, customSchedule, customCancel)); } cancelTask(task: Task): any { const value = this._zoneDelegate.cancelTask(this, task); task.runCount = -1; task.cancelFn = null; return value; } }; class ZoneDelegate implements AmbientZoneDelegate { public zone: Zone; private _taskCounts: {microTask: number, macroTask: number, eventTask: number} = {microTask: 0, macroTask: 0, eventTask: 0}; private _parentDelegate: ZoneDelegate; private _forkDlgt: ZoneDelegate; private _forkZS: ZoneSpec; private _forkCurrZone: Zone; private _interceptDlgt: ZoneDelegate; private _interceptZS: ZoneSpec; private _interceptCurrZone: Zone; private _invokeDlgt: ZoneDelegate; private _invokeZS: ZoneSpec; private _invokeCurrZone: Zone; private _handleErrorDlgt: ZoneDelegate; private _handleErrorZS: ZoneSpec; private _handleErrorCurrZone: Zone; private _scheduleTaskDlgt: ZoneDelegate; private _scheduleTaskZS: ZoneSpec; private _scheduleTaskCurrZone: Zone; private _invokeTaskDlgt: ZoneDelegate; private _invokeTaskZS: ZoneSpec; private _invokeTaskCurrZone: Zone; private _cancelTaskDlgt: ZoneDelegate; private _cancelTaskZS: ZoneSpec; private _cancelTaskCurrZone: Zone; private _hasTaskDlgt: ZoneDelegate; private _hasTaskZS: ZoneSpec; private _hasTaskCurrZone: Zone; constructor(zone: Zone, parentDelegate: ZoneDelegate, zoneSpec: ZoneSpec) { this.zone = zone; this._parentDelegate = parentDelegate; this._forkZS = zoneSpec && (zoneSpec && zoneSpec.onFork ? zoneSpec : parentDelegate._forkZS); this._forkDlgt = zoneSpec && (zoneSpec.onFork ? parentDelegate : parentDelegate._forkDlgt); this._forkCurrZone = zoneSpec && (zoneSpec.onFork ? this.zone : parentDelegate.zone); this._interceptZS = zoneSpec && (zoneSpec.onIntercept ? zoneSpec : parentDelegate._interceptZS); this._interceptDlgt = zoneSpec && (zoneSpec.onIntercept ? parentDelegate : parentDelegate._interceptDlgt); this._interceptCurrZone = zoneSpec && (zoneSpec.onIntercept ? this.zone : parentDelegate.zone); this._invokeZS = zoneSpec && (zoneSpec.onInvoke ? zoneSpec : parentDelegate._invokeZS); this._invokeDlgt = zoneSpec && (zoneSpec.onInvoke ? parentDelegate : parentDelegate._invokeDlgt); this._invokeCurrZone = zoneSpec && (zoneSpec.onInvoke ? this.zone : parentDelegate.zone); this._handleErrorZS = zoneSpec && (zoneSpec.onHandleError ? zoneSpec : parentDelegate._handleErrorZS); this._handleErrorDlgt = zoneSpec && (zoneSpec.onHandleError ? parentDelegate : parentDelegate._handleErrorDlgt); this._handleErrorCurrZone = zoneSpec && (zoneSpec.onHandleError ? this.zone : parentDelegate.zone); this._scheduleTaskZS = zoneSpec && (zoneSpec.onScheduleTask ? zoneSpec : parentDelegate._scheduleTaskZS); this._scheduleTaskDlgt = zoneSpec && (zoneSpec.onScheduleTask ? parentDelegate : parentDelegate._scheduleTaskDlgt); this._scheduleTaskCurrZone = zoneSpec && (zoneSpec.onScheduleTask ? this.zone : parentDelegate.zone); this._invokeTaskZS = zoneSpec && (zoneSpec.onInvokeTask ? zoneSpec : parentDelegate._invokeTaskZS); this._invokeTaskDlgt = zoneSpec && (zoneSpec.onInvokeTask ? parentDelegate : parentDelegate._invokeTaskDlgt); this._invokeTaskCurrZone = zoneSpec && (zoneSpec.onInvokeTask ? this.zone : parentDelegate.zone); this._cancelTaskZS = zoneSpec && (zoneSpec.onCancelTask ? zoneSpec : parentDelegate._cancelTaskZS); this._cancelTaskDlgt = zoneSpec && (zoneSpec.onCancelTask ? parentDelegate : parentDelegate._cancelTaskDlgt); this._cancelTaskCurrZone = zoneSpec && (zoneSpec.onCancelTask ? this.zone : parentDelegate.zone); this._hasTaskZS = zoneSpec && (zoneSpec.onHasTask ? zoneSpec : parentDelegate._hasTaskZS); this._hasTaskDlgt = zoneSpec && (zoneSpec.onHasTask ? parentDelegate : parentDelegate._hasTaskDlgt); this._hasTaskCurrZone = zoneSpec && (zoneSpec.onHasTask ? this.zone : parentDelegate.zone); } fork(targetZone: Zone, zoneSpec: ZoneSpec): AmbientZone { return this._forkZS ? this._forkZS.onFork(this._forkDlgt, this.zone, targetZone, zoneSpec) : new Zone(targetZone, zoneSpec); } intercept(targetZone: Zone, callback: Function, source: string): Function { return this._interceptZS ? this._interceptZS.onIntercept( this._interceptDlgt, this._interceptCurrZone, targetZone, callback, source) : callback; } invoke(targetZone: Zone, callback: Function, applyThis: any, applyArgs: any[], source: string): any { return this._invokeZS ? this._invokeZS.onInvoke( this._invokeDlgt, this._invokeCurrZone, targetZone, callback, applyThis, applyArgs, source) : callback.apply(applyThis, applyArgs); } handleError(targetZone: Zone, error: any): boolean { return this._handleErrorZS ? this._handleErrorZS.onHandleError( this._handleErrorDlgt, this._handleErrorCurrZone, targetZone, error) : true; } scheduleTask(targetZone: Zone, task: Task): Task { try { if (this._scheduleTaskZS) { return this._scheduleTaskZS.onScheduleTask( this._scheduleTaskDlgt, this._scheduleTaskCurrZone, targetZone, task); } else if (task.scheduleFn) { task.scheduleFn(task); } else if (task.type == 'microTask') { scheduleMicroTask(<MicroTask>task); } else { throw new Error('Task is missing scheduleFn.'); } return task; } finally { if (targetZone == this.zone) { this._updateTaskCount(task.type, 1); } } } invokeTask(targetZone: Zone, task: Task, applyThis: any, applyArgs: any): any { try { return this._invokeTaskZS ? this._invokeTaskZS.onInvokeTask( this._invokeTaskDlgt, this._invokeTaskCurrZone, targetZone, task, applyThis, applyArgs) : task.callback.apply(applyThis, applyArgs); } finally { if (targetZone == this.zone && (task.type != 'eventTask') && !(task.data && task.data.isPeriodic)) { this._updateTaskCount(task.type, -1); } } } cancelTask(targetZone: Zone, task: Task): any { let value; if (this._cancelTaskZS) { value = this._cancelTaskZS.onCancelTask( this._cancelTaskDlgt, this._cancelTaskCurrZone, targetZone, task); } else if (!task.cancelFn) { throw new Error('Task does not support cancellation, or is already canceled.'); } else { value = task.cancelFn(task); } if (targetZone == this.zone) { // this should not be in the finally block, because exceptions assume not canceled. this._updateTaskCount(task.type, -1); } return value; } hasTask(targetZone: Zone, isEmpty: HasTaskState) { return this._hasTaskZS && this._hasTaskZS.onHasTask(this._hasTaskDlgt, this._hasTaskCurrZone, targetZone, isEmpty); } private _updateTaskCount(type: TaskType, count: number) { const counts = this._taskCounts; const prev = counts[type]; const next = counts[type] = prev + count; if (next < 0) { throw new Error('More tasks executed then were scheduled.'); } if (prev == 0 || next == 0) { const isEmpty: HasTaskState = { microTask: counts.microTask > 0, macroTask: counts.macroTask > 0, eventTask: counts.eventTask > 0, change: type }; try { this.hasTask(this.zone, isEmpty); } finally { if (this._parentDelegate) { this._parentDelegate._updateTaskCount(type, count); } } } } } class ZoneTask implements Task { public type: TaskType; public source: string; public invoke: Function; public callback: Function; public data: TaskData; public scheduleFn: (task: Task) => void; public cancelFn: (task: Task) => void; public zone: Zone; public runCount: number = 0; constructor( type: TaskType, zone: Zone, source: string, callback: Function, options: TaskData, scheduleFn: (task: Task) => void, cancelFn: (task: Task) => void) { this.type = type; this.zone = zone; this.source = source; this.data = options; this.scheduleFn = scheduleFn; this.cancelFn = cancelFn; this.callback = callback; const self = this; this.invoke = function() { _numberOfNestedTaskFrames++; try { return zone.runTask(self, this, <any>arguments); } finally { if (_numberOfNestedTaskFrames == 1) { drainMicroTaskQueue(); } _numberOfNestedTaskFrames--; } }; } public toString() { if (this.data && typeof this.data.handleId !== 'undefined') { return this.data.handleId; } else { return Object.prototype.toString.call(this); } } // add toJSON method to prevent cyclic error when // call JSON.stringify(zoneTask) public toJSON() { return { type: this.type, source: this.source, data: this.data, zone: this.zone.name, invoke: this.invoke, scheduleFn: this.scheduleFn, cancelFn: this.cancelFn, runCount: this.runCount, callback: this.callback }; } } interface UncaughtPromiseError extends Error { zone: AmbientZone; task: Task; promise: ZoneAwarePromise<any>; rejection: any; } class ZoneFrame { public parent: ZoneFrame; public zone: Zone; constructor(parent: ZoneFrame, zone: Zone) { this.parent = parent; this.zone = zone; } } function __symbol__(name: string) { return '__zone_symbol__' + name; }; const symbolSetTimeout = __symbol__('setTimeout'); const symbolPromise = __symbol__('Promise'); const symbolThen = __symbol__('then'); let _currentZoneFrame = new ZoneFrame(null, new Zone(null, null)); let _currentTask: Task = null; let _microTaskQueue: Task[] = []; let _isDrainingMicrotaskQueue: boolean = false; const _uncaughtPromiseErrors: UncaughtPromiseError[] = []; let _numberOfNestedTaskFrames = 0; function scheduleQueueDrain() { // if we are not running in any task, and there has not been anything scheduled // we must bootstrap the initial task creation by manually scheduling the drain if (_numberOfNestedTaskFrames === 0 && _microTaskQueue.length === 0) { // We are not running in Task, so we need to kickstart the microtask queue. if (global[symbolPromise]) { global[symbolPromise].resolve(0)[symbolThen](drainMicroTaskQueue); } else { global[symbolSetTimeout](drainMicroTaskQueue, 0); } } } function scheduleMicroTask(task: MicroTask) { scheduleQueueDrain(); _microTaskQueue.push(task); } function consoleError(e: any) { const rejection = e && e.rejection; if (rejection) { console.error( 'Unhandled Promise rejection:', rejection instanceof Error ? rejection.message : rejection, '; Zone:', (<Zone>e.zone).name, '; Task:', e.task && (<Task>e.task).source, '; Value:', rejection, rejection instanceof Error ? rejection.stack : undefined); } console.error(e); } function drainMicroTaskQueue() { if (!_isDrainingMicrotaskQueue) { _isDrainingMicrotaskQueue = true; while (_microTaskQueue.length) { const queue = _microTaskQueue; _microTaskQueue = []; for (let i = 0; i < queue.length; i++) { const task = queue[i]; try { task.zone.runTask(task, null, null); } catch (e) { consoleError(e); } } } while (_uncaughtPromiseErrors.length) { while (_uncaughtPromiseErrors.length) { const uncaughtPromiseError: UncaughtPromiseError = _uncaughtPromiseErrors.shift(); try { uncaughtPromiseError.zone.runGuarded(() => { throw uncaughtPromiseError; }); } catch (e) { consoleError(e); } } } _isDrainingMicrotaskQueue = false; } } function isThenable(value: any): boolean { return value && value.then; } function forwardResolution(value: any): any { return value; } function forwardRejection(rejection: any): any { return ZoneAwarePromise.reject(rejection); } const symbolState: string = __symbol__('state'); const symbolValue: string = __symbol__('value'); const source: string = 'Promise.then'; const UNRESOLVED = null; const RESOLVED = true; const REJECTED = false; const REJECTED_NO_CATCH = 0; function makeResolver(promise: ZoneAwarePromise<any>, state: boolean): (value: any) => void { return (v) => { resolvePromise(promise, state, v); // Do not return value or you will break the Promise spec. }; } function resolvePromise( promise: ZoneAwarePromise<any>, state: boolean, value: any): ZoneAwarePromise<any> { if (promise[symbolState] === UNRESOLVED) { if (value instanceof ZoneAwarePromise && value.hasOwnProperty(symbolState) && value.hasOwnProperty(symbolValue) && value[symbolState] !== UNRESOLVED) { clearRejectedNoCatch(<Promise<any>>value); resolvePromise(promise, value[symbolState], value[symbolValue]); } else if (isThenable(value)) { value.then(makeResolver(promise, state), makeResolver(promise, false)); } else { promise[symbolState] = state; const queue = promise[symbolValue]; promise[symbolValue] = value; for (let i = 0; i < queue.length;) { scheduleResolveOrReject(promise, queue[i++], queue[i++], queue[i++], queue[i++]); } if (queue.length == 0 && state == REJECTED) { promise[symbolState] = REJECTED_NO_CATCH; try { throw new Error( 'Uncaught (in promise): ' + value + (value && value.stack ? '\n' + value.stack : '')); } catch (e) { const error: UncaughtPromiseError = e; error.rejection = value; error.promise = promise; error.zone = Zone.current; error.task = Zone.currentTask; _uncaughtPromiseErrors.push(error); scheduleQueueDrain(); } } } } // Resolving an already resolved promise is a noop. return promise; } function clearRejectedNoCatch(promise: ZoneAwarePromise<any>): void { if (promise[symbolState] === REJECTED_NO_CATCH) { promise[symbolState] = REJECTED; for (let i = 0; i < _uncaughtPromiseErrors.length; i++) { if (promise === _uncaughtPromiseErrors[i].promise) { _uncaughtPromiseErrors.splice(i, 1); break; } } } } function scheduleResolveOrReject<R, U>( promise: ZoneAwarePromise<any>, zone: AmbientZone, chainPromise: ZoneAwarePromise<any>, onFulfilled?: (value: R) => U, onRejected?: (error: any) => U): void { clearRejectedNoCatch(promise); const delegate = promise[symbolState] ? onFulfilled || forwardResolution : onRejected || forwardRejection; zone.scheduleMicroTask(source, () => { try { resolvePromise(chainPromise, true, zone.run(delegate, null, [promise[symbolValue]])); } catch (error) { resolvePromise(chainPromise, false, error); } }); } class ZoneAwarePromise<R> implements Promise<R> { static toString() { return 'function ZoneAwarePromise() { [native code] }'; } static resolve<R>(value: R): Promise<R> { return resolvePromise(<ZoneAwarePromise<R>>new this(null), RESOLVED, value); } static reject<U>(error: U): Promise<U> { return resolvePromise(<ZoneAwarePromise<U>>new this(null), REJECTED, error); } static race<R>(values: PromiseLike<any>[]): Promise<R> { let resolve: (v: any) => void; let reject: (v: any) => void; let promise: any = new this((res, rej) => { [resolve, reject] = [res, rej]; }); function onResolve(value) { promise && (promise = null || resolve(value)); } function onReject(error) { promise && (promise = null || reject(error)); } for (let value of values) { if (!isThenable(value)) { value = this.resolve(value); } value.then(onResolve, onReject); } return promise; } static all<R>(values): Promise<R> { let resolve: (v: any) => void; let reject: (v: any) => void; let promise = new this((res, rej) => { resolve = res; reject = rej; }); let count = 0; const resolvedValues = []; for (let value of values) { if (!isThenable(value)) { value = this.resolve(value); } value.then( ((index) => (value) => { resolvedValues[index] = value; count--; if (!count) { resolve(resolvedValues); } })(count), reject); count++; } if (!count) resolve(resolvedValues); return promise; } constructor( executor: (resolve: (value?: R|PromiseLike<R>) => void, reject: (error?: any) => void) => void) { const promise: ZoneAwarePromise<R> = this; if (!(promise instanceof ZoneAwarePromise)) { throw new Error('Must be an instanceof Promise.'); } promise[symbolState] = UNRESOLVED; promise[symbolValue] = []; // queue; try { executor && executor(makeResolver(promise, RESOLVED), makeResolver(promise, REJECTED)); } catch (e) { resolvePromise(promise, false, e); } } then<R, U>( onFulfilled?: (value: R) => U | PromiseLike<U>, onRejected?: (error: any) => U | PromiseLike<U>): Promise<R> { const chainPromise: Promise<R> = new (this.constructor as typeof ZoneAwarePromise)(null); const zone = Zone.current; if (this[symbolState] == UNRESOLVED) { (<any[]>this[symbolValue]).push(zone, chainPromise, onFulfilled, onRejected); } else { scheduleResolveOrReject(this, zone, chainPromise, onFulfilled, onRejected); } return chainPromise; } catch<U>(onRejected?: (error: any) => U | PromiseLike<U>): Promise<R> { return this.then(null, onRejected); } } // Protect against aggressive optimizers dropping seemingly unused properties. // E.g. Closure Compiler in advanced mode. ZoneAwarePromise['resolve'] = ZoneAwarePromise.resolve; ZoneAwarePromise['reject'] = ZoneAwarePromise.reject; ZoneAwarePromise['race'] = ZoneAwarePromise.race; ZoneAwarePromise['all'] = ZoneAwarePromise.all; const NativePromise = global[__symbol__('Promise')] = global['Promise']; global['Promise'] = ZoneAwarePromise; function patchThen(NativePromise) { const NativePromiseProtototype = NativePromise.prototype; const NativePromiseThen = NativePromiseProtototype[__symbol__('then')] = NativePromiseProtototype.then; NativePromiseProtototype.then = function(onResolve, onReject) { const nativePromise = this; return new ZoneAwarePromise((resolve, reject) => { NativePromiseThen.call(nativePromise, resolve, reject); }) .then(onResolve, onReject); }; } if (NativePromise) { patchThen(NativePromise); if (typeof global['fetch'] !== 'undefined') { let fetchPromise: Promise<any>; try { // In MS Edge this throws fetchPromise = global['fetch'](); } catch (e) { // In Chrome this throws instead. fetchPromise = global['fetch']('about:blank'); } // ignore output to prevent error; fetchPromise.then(() => null, () => null); if (fetchPromise.constructor != NativePromise && fetchPromise.constructor != ZoneAwarePromise) { patchThen(fetchPromise.constructor); } } } // This is not part of public API, but it is usefull for tests, so we expose it. Promise[Zone.__symbol__('uncaughtPromiseErrors')] = _uncaughtPromiseErrors; /* * This code patches Error so that: * - It ignores un-needed stack frames. * - It Shows the associated Zone for reach frame. */ enum FrameType { /// Skip this frame when printing out stack blackList, /// This frame marks zone transition transition } const NativeError = global[__symbol__('Error')] = global.Error; // Store the frames which should be removed from the stack frames const blackListedStackFrames: {[frame: string]: FrameType} = {}; // We must find the frame where Error was created, otherwise we assume we don't understand stack let zoneAwareFrame: string; global.Error = ZoneAwareError; // How should the stack frames be parsed. let frameParserStrategy = null; const stackRewrite = 'stackRewrite'; // fix #595, create property descriptor // for error properties const createProperty = function(props, key) { // if property is already defined, skip it. if (props[key]) { return; } // define a local property // in case error property is not settable const name = __symbol__(key); props[key] = { configurable: true, enumerable: true, get: function() { // if local property has no value // use internal error's property value if (!this[name]) { const error = this[__symbol__('error')]; if (error) { this[name] = error[key]; } } return this[name]; }, set: function(value) { // setter will set value to local property value this[name] = value; } }; }; // fix #595, create property descriptor // for error method properties const createMethodProperty = function(props, key) { if (props[key]) { return; } props[key] = { configurable: true, enumerable: true, writable: true, value: function() { const error = this[__symbol__('error')]; let errorMethod = (error && error[key]) || this[key]; if (errorMethod) { return errorMethod.apply(error, arguments); } } }; }; const createErrorProperties = function() { const props = Object.create(null); const error = new NativeError(); let keys = Object.getOwnPropertyNames(error); for (let i = 0; i < keys.length; i++) { const key = keys[i]; // Avoid bugs when hasOwnProperty is shadowed if (Object.prototype.hasOwnProperty.call(error, key)) { createProperty(props, key); } } const proto = NativeError.prototype; if (proto) { let pKeys = Object.getOwnPropertyNames(proto); for (let i = 0; i < pKeys.length; i++) { const key = pKeys[i]; // skip constructor if (key !== 'constructor' && key !== 'toString' && key !== 'toSource') { createProperty(props, key); } } } // some other properties are not // in NativeError createProperty(props, 'originalStack'); createProperty(props, 'zoneAwareStack'); // define toString, toSource as method property createMethodProperty(props, 'toString'); createMethodProperty(props, 'toSource'); return props; }; const errorProperties = createErrorProperties(); // for derived Error class which extends ZoneAwareError // we should not override the derived class's property // so we create a new props object only copy the properties // from errorProperties which not exist in derived Error's prototype const getErrorPropertiesForPrototype = function(prototype) { // if the prototype is ZoneAwareError.prototype // we just return the prebuilt errorProperties. if (prototype === ZoneAwareError.prototype) { return errorProperties; } const newProps = Object.create(null); const cKeys = Object.getOwnPropertyNames(errorProperties); const keys = Object.getOwnPropertyNames(prototype); cKeys.forEach(cKey => { if (keys.filter(key => { return key === cKey; }) .length === 0) { newProps[cKey] = errorProperties[cKey]; } }); return newProps; }; /** * This is ZoneAwareError which processes the stack frame and cleans up extra frames as well as * adds zone information to it. */ function ZoneAwareError() { // make sure we have a valid this // if this is undefined(call Error without new) or this is global // or this is some other objects, we should force to create a // valid ZoneAwareError by call Object.create() if (!(this instanceof ZoneAwareError)) { return ZoneAwareError.apply(Object.create(ZoneAwareError.prototype), arguments); } // Create an Error. let error: Error = NativeError.apply(this, arguments); this[__symbol__('error')] = error; // Save original stack trace error.originalStack = error.stack; // Process the stack trace and rewrite the frames. if (ZoneAwareError[stackRewrite] && error.originalStack) { let frames: string[] = error.originalStack.split('\n'); let zoneFrame = _currentZoneFrame; let i = 0; // Find the first frame while (frames[i] !== zoneAwareFrame && i < frames.length) { i++; } for (; i < frames.length && zoneFrame; i++) { let frame = frames[i]; if (frame.trim()) { let frameType = blackListedStackFrames.hasOwnProperty(frame) && blackListedStackFrames[frame]; if (frameType === FrameType.blackList) { frames.splice(i, 1); i--; } else if (frameType === FrameType.transition) { if (zoneFrame.parent) { // This is the special frame where zone changed. Print and process it accordingly frames[i] += ` [${zoneFrame.parent.zone.name} => ${zoneFrame.zone.name}]`; zoneFrame = zoneFrame.parent; } else { zoneFrame = null; } } else { frames[i] += ` [${zoneFrame.zone.name}]`; } } } error.stack = error.zoneAwareStack = frames.join('\n'); } // use defineProperties here instead of copy property value // because of issue #595 which will break angular2. Object.defineProperties(this, getErrorPropertiesForPrototype(Object.getPrototypeOf(this))); return this; } // Copy the prototype so that instanceof operator works as expected ZoneAwareError.prototype = NativeError.prototype; ZoneAwareError[Zone.__symbol__('blacklistedStackFrames')] = blackListedStackFrames; ZoneAwareError[stackRewrite] = false; if (NativeError.hasOwnProperty('stackTraceLimit')) { // Extend default stack limit as we will be removing few frames. NativeError.stackTraceLimit = Math.max(NativeError.stackTraceLimit, 15); // make sure that ZoneAwareError has the same property which forwards to NativeError. Object.defineProperty(ZoneAwareError, 'stackTraceLimit', { get: function() { return NativeError.stackTraceLimit; }, set: function(value) { return NativeError.stackTraceLimit = value; } }); } if (NativeError.hasOwnProperty('captureStackTrace')) { Object.defineProperty(ZoneAwareError, 'captureStackTrace', { // add named function here because we need to remove this // stack frame when prepareStackTrace below value: function zoneCaptureStackTrace(targetObject: Object, constructorOpt?: Function) { NativeError.captureStackTrace(targetObject, constructorOpt); } }); } Object.defineProperty(ZoneAwareError, 'prepareStackTrace', { get: function() { return NativeError.prepareStackTrace; }, set: function(value) { if (!value || typeof value !== 'function') { return NativeError.prepareStackTrace = value; } return NativeError.prepareStackTrace = function(error, structuredStackTrace) { // remove additional stack information from ZoneAwareError.captureStackTrace if (structuredStackTrace) { for (let i = 0; i < structuredStackTrace.length; i++) { const st = structuredStackTrace[i]; // remove the first function which name is zoneCaptureStackTrace if (st.getFunctionName() === 'zoneCaptureStackTrace') { structuredStackTrace.splice(i, 1); break; } } } return value.apply(this, [error, structuredStackTrace]); }; } }); // Now we need to populet the `blacklistedStackFrames` as well as find the // run/runGuraded/runTask frames. This is done by creating a detect zone and then threading // the execution through all of the above methods so that we can look at the stack trace and // find the frames of interest. let detectZone: Zone = Zone.current.fork({ name: 'detect', onInvoke: function( parentZoneDelegate: ZoneDelegate, currentZone: Zone, targetZone: Zone, delegate: Function, applyThis: any, applyArgs: any[], source: string): any { // Here only so that it will show up in the stack frame so that it can be black listed. return parentZoneDelegate.invoke(targetZone, delegate, applyThis, applyArgs, source); }, onHandleError: function(parentZD: ZoneDelegate, current: Zone, target: Zone, error: any): boolean { if (error.originalStack && Error === ZoneAwareError) { let frames = error.originalStack.split(/\n/); let runFrame = false, runGuardedFrame = false, runTaskFrame = false; while (frames.length) { let frame = frames.shift(); // On safari it is possible to have stack frame with no line number. // This check makes sure that we don't filter frames on name only (must have // linenumber) if (/:\d+:\d+/.test(frame)) { // Get rid of the path so that we don't accidintely find function name in path. // In chrome the seperator is `(` and `@` in FF and safari // Chrome: at Zone.run (zone.js:100) // Chrome: at Zone.run (http://localhost:9876/base/build/lib/zone.js:100:24) // FireFox: Zone.prototype.run@http://localhost:9876/base/build/lib/zone.js:101:24 // Safari: run@http://localhost:9876/base/build/lib/zone.js:101:24 let fnName: string = frame.split('(')[0].split('@')[0]; let frameType = FrameType.transition; if (fnName.indexOf('ZoneAwareError') !== -1) { zoneAwareFrame = frame; } if (fnName.indexOf('runGuarded') !== -1) { runGuardedFrame = true; } else if (fnName.indexOf('runTask') !== -1) { runTaskFrame = true; } else if (fnName.indexOf('run') !== -1) { runFrame = true; } else { frameType = FrameType.blackList; } blackListedStackFrames[frame] = frameType; // Once we find all of the frames we can stop looking. if (runFrame && runGuardedFrame && runTaskFrame) { ZoneAwareError[stackRewrite] = true; break; } } } } return false; } }) as Zone; // carefully constructor a stack frame which contains all of the frames of interest which // need to be detected and blacklisted. let detectRunFn = () => { detectZone.run(() => { detectZone.runGuarded(() => { throw new Error('blacklistStackFrames'); }); }); }; // Cause the error to extract the stack frames. detectZone.runTask(detectZone.scheduleMacroTask('detect', detectRunFn, null, () => null, null)); return global['Zone'] = Zone; })(typeof window === 'object' && window || typeof self === 'object' && self || global);